On y-closed Dual Rickart Modules

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

T-dual Rickart modules

We introduce the notions of T-dual Rickart and strongly T-dual Rickart modules. We provide several characterizations and investigate properties of each of these concepts. It is shown that every free (resp. finitely generated free) $R$-module is T-dual Rickart if and only if $overline{Z}^2(R)$ is a  direct summand of $R$ and End$(overline{Z}^2(R))$ is a semisimple (resp. regular) ring. It is sho...

متن کامل

t-dual rickart modules

we introduce the notions of t-dual rickart and strongly t-dual rickart modules. we provide several characterizations and investigate properties of each of these concepts. it is shown that every free (resp. finitely generated free) $r$-module is t-dual rickart if and only if $overline{z}^2(r)$ is a  direct summand of $r$ and end$(overline{z}^2(r))$ is a semisimple (resp. regular) ring. it is sho...

متن کامل

On Rickart modules

Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. The module $M$ is called {it Rickart} if for any $fin S$, $r_M(f)=Se$ for some $e^2=ein S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.

متن کامل

on rickart modules

let $r$ be an arbitrary ring with identity and $m$ a right $r$-module with $s=$ end$_r(m)$. the module $m$ is called {it rickart} if for any $fin s$, $r_m(f)=se$ for some $e^2=ein s$. we prove that some results of principally projective rings and baer modules can be extended to rickart modules for this general settings.

متن کامل

Dual Modules

Let R be a commutative ring. For two (left) R-modules M and N , the set HomR(M,N) of allR-linear maps fromM toN is anR-module under natural addition and scaling operations on linear maps. (If R were non-commutative then the definition (r · f)(m) = r · (f(m)) would yield a function r · f from M to N which is usually not R-linear. Try it!) In the special case where N = R we get the R-module M∨ = ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iraqi Journal of Science

سال: 2021

ISSN: 2312-1637,0067-2904

DOI: 10.24996/ijs.2021.62.4.18